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Abstract - A  fixed shaped beam antenna offers an excellent compromise between cost  and system performance in high data rate systems operating in 
the frequency range of 5- 65 GHz. Shaped Dielectric Lenses perform the task of collimation and shaping, along with physically small feed antennas, to 
obtain multiple and shaped beams in a fixed set of directions. Lenses are inherently broadband, easy to fabricate, have lower dimensional tolerances, 
cost effective and act as radome for the primary radiators that are embedded inside or placed behind the lens. Earlier techniques for the analysis of 
shaped dielectric  lenses, employed ray tracing methods of GO and PO, that are valid only in the far field of a primary point source type of radiator. But 
the dielectric  lens is in the near field of finite sized primary radiators oriented at different angles and at different distances from the lens center. In this 
paper we discuss, a new accurate analytical procedure for the radiation pattern of a spherical lens excited by a rectangular patch. The lens is treated as 
a scatterer. Techniques for radial  translation and spatial rotation of the small aperture Spherical Modal Complex Coefficients (SMCC) are utilized to align  
them to the phase center of the Dielectric Lens. The SMCC of the scattered fields due to the lens are then obtained by application of boundary 
conditions. Sample computations are performed to demonstrate the approach and supported by experimental results.  
 

Index Terms - MBS, Smart Antenna,  Dielectric Lens, SME, SVWF, SMCC 

——————————      —————————— 

1. INTRODUCTION 

ew frequency bands were opened up in 5 to 11 GHz, 
to support WLAN applications and in 40 to 65 GHz 
bands to support Mobile Broadband Systems 

(MBS).To achieve a high rate goal, ‗Smart Antennas‘ were 
proposed at the base stations[1]. An adaptive multi beam 
smart antenna has the ability to cope with a rapidly 
changing environment by distributing the limited power of 
solid state amplifiers in the best possible way within the 
cell, as to ensure sufficient signal to noise ratio at a receiver 
to sustain the desired high data rates. However a cost 
effective implementation of a ‗Smart Antenna‘ is limited 
due to high cost of RF array elements, RF distribution and 
phasing [1-2]. 

   It is for this reason that fixed shaped beam antennas 
offer an excellent compromise between cost and system 
performance especially in an urban scenario where dense 
traffic occurs in specified directions only. 

  Shaped Dielectric Lenses perform the task of 
collimation and shaping, along with physically small feed 
antennas, to obtain multiple and shaped beams in a fixed 
set of directions. Lenses are inherently broadband, easy to 
fabricate, have lower dimensional tolerances, cost effective 
and provide a covering radome for the primary radiators 
that are embedded inside or placed behind the lens. The 
drawback thus far has primarily been an accurate analysis, 
apart from reducing internal reflections, dielectric losses 
and eventually the size of the dielectric lens [2-4].  

   Earlier techniques for the analysis of shaped dielectric 
lenses, employed ray tracing methods of GO and PO, that 
are valid only in the far field of a primary point source type 
of radiator. But in reality, the dielectric lens is in the near 
field of finite sized primary radiators oriented at different 
angles and at different distances from the lens center. 

  In this work, a new accurate analytical procedure is 
proposed for the radiation pattern of multiple primary 
radiators in the near field of a dielectric lens using Spherical 

Modal Expansion (SME) approach. Earlier SME approaches 
to solve for the field scattered by a dielectric sphere 
approximated the primary radiator as a far field Huygens 
source [9]. 

  The lens is treated as a scatterer. Techniques for radial 
translation and spatial rotation of the small aperture 
Spherical Modal Complex Coefficients (SMCC) are utilized 
to align them to the phase center of the Dielectric Lens. The 
SMCC of the scattered fields due to the lens are then 
obtained by application of boundary conditions. 

  The analysis is flexible enough to accommodate 
different types of radiators and different shapes for the 
dielectric lens. 

 
2. ANALYSIS 
  Consider a set of primary feeds radiating in the presence 
of a dielectric sphere as shown below.  
The co-ordinate system of the lens in which the primary 
feeds are embedded is shown in Figure1a [9]. Figure1b is 
the coordinate system native to a primary feed.  
 

 
Figure 1a A Lens with three feeds 
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Figure 1b   A single primary feed 

 
 
A.  Characterization of the Primary Radiator 
  The near fields radiated by the primary feed at any point 
in its own coordinate system are given by  
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Here 
'
mnM

 and 
'
mnN

are the mutually orthogonal TE & TM 
Spherical Vector Wave Functions (SVWF) respectively, 

defined in [10] with a 
tje 
 time variation. The TE and TM 

Spherical Modal Complex Coefficients (SMCC) are denoted 

by  na and nb  respectively. Here ‗n‘ is the spherical modal 

index and ‗m‘ is the azimuthal index occurring as
jme . For 

linearly polarized primary radiators 1m  . Yo is the 
admittance of the surrounding medium. The maximum 
value of the running index ‗n‘ is set to  

]lensdia*k[ceilNmax  that accounts for more than 99.9% 
of the energy radiated by collimating type of antennas as  
shown by Arthur [12] and like the ones considered in this 
work. 
  Compute the far fields over an enclosing sphere centered 
at the aperture center by aperture field integration 
described in [11].The fields over an enclosing sphere may 
also be obtained by an accurate measurement for any one 
primary radiator in an anechoic chamber. Using the 

orthogonality of the SVWF‘s, the SMCC‘s na and nb of the 
primary radiator are obtained. These are valid anywhere in 
near and far space [9]. 
 
B. Radial Translation of SMCC 
  The SMCC of the primary radiator are to be translated to 
the phase center of the dielectric sphere, as it is the 
reference point for evaluating the fields finally scattered by 
the lens.  This is accomplished by translation addition 
theorems and a recursion method of computation described 
in [6-7].But it should be noted that while the translated 
origin would coincide with the phase center and coordinate 
origin of the dielectric lens, it is not yet spatially aligned to 
it. The translated SMCC would have the following 
expressions. 
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In equation(3) & (4) the symbol ‖ is used to represent a 
radiator coordinate system that has been translated to the 
lens phase center but not spatially aligned to it. The 
translated SMCC‘s Atn and Btn are computed for a distance 
‗d‘ between the primary radiator aperture centre and the 
lens phase centre (Figure 1a) using the expressions below. 
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The running index ‗v‘ is up to Nmax. The translation 
coefficients Avn and Bvn  in (5) and (6) are given by [6]. 
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 is the spherical Hankel function of second 
kind. 

The summation over ‗p‘ runs as 
vn.............vn 

 and 
includes 1+max [v, n] terms. The values of 

)p,v,m,n,m(aa p 
 are computed using the recursion 

relations [6] as below. 
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The recursion relation is performed in the descending order 
of the index. 
 
C. Spatial Rotation of SMCC 
  The translated SMCC in equations (5) and (6) are now 
referred to the lens phase centre coordinate system by 
performing a spatial rotation. If R represents the 
mathematical rotation group, then as described by 

Edmonds [8], the symbol  
)R(Dn

mu  would be the matrix of 
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rotation coefficients for one element of the rotation group 

defined by a set of three Eulerian angles ),,(  that 
would align the translated primary radiator coordinate 
system with the lens phase centre coordinate system. The 
translated and rotated SMCC of the primary radiator are 

computed using tnA  and tnB in (5) and (6) after 
substituting into the expressions below. 
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                                                                                                    In 
(11), (12) and (13), ‗u‘ is the polarization index and ‗m‘ is 
the azimuthal index. In our case the primary radiators 

chosen always have u = m = 1. The rotation factors
)(dn

mu 
) 

are computed from the recursion relations for Jacobi 
polynomials for small values of ‗n‘ as described in [8].For 
large values of ‗n‘ it is computationally more efficient to 
compute the rotation factors by employing complex FFT 
and a data reduction techniques. Since we are dealing with 
Nmax of less than 50 the recursion relation was preferred 
here. 
 
D. Scattering Coefficients 

  Boundary conditions are applied on the surface of the 
dielectric lens for the total field, which are represented as 

dsi EEE   and dsi HHH  .Here iE  is the incident 

field of the primary radiator, sE  is the field scattered 

outside the lens and dE is the field scattered inside the lens. 

The incident field iE  is now characterized by its Translated 

and Rotated SMCC ]B,A[ nmnm  as in (11) and (12) referred 
to the lens phase centre. The unknown scattered fields 

sE and dE  are represented by their unknown SMCC 

]B,A[ nsns  and ]B,A[ ndnd  respectively now referred to 
unprimed lens phase center coordinate system. Substituting 

the spherical modal expressions for iE , sE  and dE in terms 
of their SMCC, it is evident that there are two known 

coefficients ]B,A[ nmnm   and four unknown 

coefficients
]B,A[ nsns , ]B,A[ ndnd  for each modal index ‗n‘. 

Thus there are maxN*4  spherical modal complex 
coefficients that are unknown and to be determined. To 
solve for these, we apply equations of continuity of 

tangential electric and magnetic field 
  EEE

 over 

the surface of the sphere 0rr 
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In the case of a spherical dielectric lens of radius ro, the 
orthogonality conditions of SVWF [10] can be invoked on 
the surface of the sphere by integrating the dot product of 

E  with the vector wave functions Mmn and Nmn over 


and 
applying orthogonality of the Associated Legendre 
functions in θ, to obtain four linearly independent 
equations for each spherical modal index ‗n‘. Thus all the 4 
* Nmax unknowns are easily solved as closed form 
expressions and given below for a spherical lens. 
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Here   is the differential operator expanded typically as   
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  When the lens shape is not spherical, a closed form 
solution may not be possible. However this technique can 
be easily extended to dielectric shells easily. The scattered 
filed outside the shell is obtained by the same method but 
the field inside the spherical shell needs reapplication of the 
boundary conditions that yields a different sect of SMCCs 
inside the spherical shell. 

With all SMCC for iE  as ]B,A[ nmnm and sE  as 

]B,A[ nsns now known, the total field at any point in space 
in the near or far field is computed by addition of the 
incident and scattered fields using the equations (1) and (2). 
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 3. SAMPLE CALCULATION AND EXPERIMENT 
  A sample computation was performed to test the validity 
of the analysis. A single element rectangular patch was 
made to radiate at a frequency of 2.5 GHz, in front of a 

Teflon sphere ( 08.2d  ) of diameter 12cms in an anechoic 
chamber. The distance of separation between the patch and 
center of the dielectric lens was kept at 5 cm, where the 
reflection losses were better than -20 db. To perform the 
measurement, the dielectric sphere was kept on a 

supporting stand made of polystyrene foam with 08.1d   
practically same as free space, so that the radiation pattern 
of the aperture-lens combination does not get perturbed. 
   Figure 2a and 2b show the single element rectangular 
patch and the spherical lens fabricated for the purpose 
respectively. Figure 3 shows the actual set up used for the 
experiment. Figures 4 show the return losses of the patch 
antenna. 
   The rectangular patch–lens combination was excited by a 
RF signal generator at a frequency of 2.7GHz. At this 
frequency, the number of modes considered was, 

30Nmax   i.e. ]lensdia*k[ceilNmax  which accounts for 
about 99.9% of the energy. 

  The SMCCs  an   and bn  of the primary radiator are 

computed using the field expressions (1) and (2) of the SME 
model by exploiting the orthogonality properties of Mmn 

and Nnm[11]. The magnitudes of an and bn are shown in 
Figure 5 for 100 modes. The fast decay of   the SMCCs 
indicates that most of the energy is concentrated in the first 
few modes (~5) where as the higher order modes contain 
negligible energy.   
   Using these SMCCs, the far fields of the rectangular patch 
are reconstructed by substituting them in expressions (1) 
and (2). The fields of the rectangular patch were also 
calculated using Aperture Integration Method [11]. There 
was a satisfactory match between the patterns obtained by 
the two methods as is evident from Figure 6. 
As the phase centre of the dielectric lens is the reference 
point for the analysis, the SMCC‗s obtained in the previous 
steps are subjected to the operation of radial translation 
using the equations (5) and (6) for a radial distance of 
2.5cms
As expected, the SMCCs decay fast indicating that the 
translation operation has not changed the energy content of 
the modes. The far fields are reconstructed again using the 
SME expressions (1) and (2), but with the translated   
SMCCs and are shown in Figure 7.                                                                                                                                                                                 
The translated SMCCs are then spatially rotated using the 
rotation matrix to align them to the phase centre of the lens 
with the help of expressions in (11) and (12). The fields after 
the rotation operation are calculated by substituting the 
rotated SMCCs in expressions (1) and (2) and is shown in 
Figure 8.There is a reasonably close match between these 
fields and those in Figure 6.  

 The scattering coefficients And, Ans, Bnd, and Bns,   are 
obtained by invoking the boundary conditions on the lens 
surface for the total fields using the expressions (18)-(21). 
The fields Es and Ed scattered by the lens are found out by 
substituting these scattering coefficients in (1) and (2). 
Figure 9 shows the fields scattered by the lens, which are in 
close agreement with the fields obtained by direct aperture 
integration shown in Figure 6.  
 

 
     

Figure 2a Rectangular Patch 
 

 
 
 
 
 
 
 
 
 
 

Figure 2b Teflon Spherical Lens 
 

 

 
 

Figure 3 Lens Setup in an Anechoic Chamber                          
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Figure 4 Return Loss of the Patch   Antenna 
 
 
 
 
 
 
 
 
 
                                                                                                              
                                                                                                                                                   

 

 
Figure 5 Plot of  an   and bn   

 
 

     

 
      Figure 6 Far Fields calculated by SME and AI            
Methods (Initial Reconstruction) 
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Figure7 Far Fields after linear translation 

 

      

        

Figure 8 Far Fields after spatial rotation 
 
 
 

              

 
 

Figure 9 Far Fields after scattering 
 

4. CONCLUSION 
  An analytically accurate and novel solution to the problem 
of prediction of radiation patterns of small aperture 
primary radiators in the presence of dielectric lenses has 
been presented. This uses Spherical Modal Expansion to 
characterize the primary radiator fields and the unknown 
scattered fields are obtained from a closed form solution for 
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spherically shaped lenses. The procedure involved 
translation and rotation of the primary radiator SME 
coefficients. The validity of this theoretical procedure has 
been demonstrated for a typical case of primary radiators 
like rectangular waveguide, small horns and patch arrays 
radiating in the presence of a Teflon spherical lens by 
comparing results with an experimental program. The 
analysis is easily applied to any type of radiating aperture 
and any shaped dielectric lens. 
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